MATH 170 – CHAPTER 7

Name:

Need To Know

- ×
- Solving triangle theory
- Law of Sine
- Application

Theory on Solving Triangles

Solving Oblique Triangles	
<u>Case</u>	<u>Method</u>
AAA	
AAS ASA SSA = ASS	
SAS SSS	

Law of Sine

Consider ∆ABC:

h has two sub-triangles 。

sin A =

sin C =

© Scott Eckert

Solve the triangle given two angles $^{\circ}_{B}$ 315 $^{\circ}_{C}$ $^{\circ}_{A}$ $^{\circ}_{B}$ $^{\circ}_{B}$ and $^{\circ}_{A}$ $^{\circ}_{B}$ $^{\circ}$

 $\angle A = 51^{\circ}$, s = 21 and r = 22 Find x

Application

#30 150 ft antenna

 \angle of elevation to the top of antenna = 28.5

 \angle of elevation to bottom of antenna = 23.5

Find the height of hill

end

7.2 The Ambiguous Case

Need To Know

- Solving Triangles with 2 Sides
- The Ambiguous Case
- Test for solutions
- Practice/Application

Examine the SketchPad illustration to determine if given an angle and the next two consecutive sides, will a triangle be solvable?

See SSA.gsp

 $\angle A = 55^{\circ}$, b = 36 and a = 18

 $\angle A = 112.0^{\circ}$, a = 43.0 and b = 22.0

 $\angle C = 65^{\circ}$, b = 7.6 and c = 7.1

end

Need To Know

- Law of Cosine
- Practice and Applications

Set Up

Can we use the Law of Sine to solve SAS?

Look at side <u>a</u> with Pythagorean theorem

Solve Triangles

 $\angle B = 23^{\circ}$, a = 3.7m and c = 6.4m Find side b.

Solve Triangles

a = 51 cm, b = 24 cm and c = 31 cm Find the largest angle.

#24 Two ships leave the harbor at the same time. One goes 14 mph S13°W, the other 12 mph N75°E. Find the distance between them after 3 hours.

end

7.4 The Area of a Triangle

Need To Know

- Three formulas for triangle area
- Practice and application
- You <u>don't</u> need to memorize the formulas

The Area of a Triangle - SAS

Find the area formula without reference to h.

Area = $\frac{1}{2}$ bc sin A

 $= \frac{1}{2}$ ab $\sin C$

 $= \frac{1}{2}$ ac sin B

The Area of a Triangle - ASA

Given: ASA = $\angle A$, c, $\angle B$

Area = $\frac{1}{2}$ (h)c Note: h = b sin A

$$i = \frac{b^2 \sin A \sin C}{\sin B}$$

$$i = \frac{c^2 \sin A \sin B}{\sin C}$$

Heron's Formula

$$Area = \sqrt{s(s-a)(s-b)(s-c)}$$

where a, b, & c are the sides and $s = \frac{1}{2}(a + b + c)$

Find the area a triangle.

$$\angle A = 14^{\circ}20', \angle C = 75^{\circ}40'$$

and
$$b = 2.72 \text{ ft.}$$

Area =
$$\frac{1}{2}$$
 bc sin A

=
$$\frac{1}{2}$$
 ac sin B

$$Area = \frac{a^2 \sin B \sin C}{\sin A}$$

$$i = \frac{b^2 \sin A \sin C}{\sin B}$$

$$i = \frac{c^2 \sin A \sin B}{\sin C}$$

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Find the area a parallelogram

Area =
$$\frac{1}{2}$$
 bc sin A
= $\frac{1}{2}$ ab sin C

$$Area = \frac{a^2 \sin B \sin C}{\sin A}$$

$$i = \frac{b^2 \sin A \sin C}{\sin B}$$

$$i = \frac{c^2 \sin A \sin B}{\sin C}$$

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

end

7.5 Vector – Algebraic Approach

Need To Know

- Unit Vectors
- Notation and Magnitude
- Vector Operations
 - . Addition
 - 2. Subtraction
 - 3. Scalar multiplication

Definitions and Notation

Unit Vectors

Notation

$$V = 2i - 3j$$
 or <2, -3>

<u>Magnitude</u>

If
$$V = ai + bj$$
 or $\langle a, b \rangle$
then _____

Add and Subtract Vectors

If
$$U = 4i + 5j$$
 and $V = 7i - 4j$, then find $U + V$

$$U - V$$

If U = 4i + 5j and V = 7i - 4j, then find 2U

$$3U - 4V$$

Review Applications

Luke and Beth are rollerblading. Luke is pushing Beth up a hill with an 8.5 incline. He stops and hold Beth in place. If Beth weighs 85 lbs. Find the force that Luke must push to keep Beth from rolling backwards.

Need To Know

- Dot product
- Vector Angle Theorem
- Work

vector•vector = ?

Definition:

If
$$U = ai + bj$$
 and $V = ci + dj$
Then $U \cdot V =$

Example

If
$$U = 4i + 5j$$
 and $V = 7i - 4j$, then find $U \cdot V$

Theorem 7.1

where θ is the angle between U and V.

Example:

If
$$U = 4i + 5j$$
 and $V = 7i - 4j$, then find θ .

Theorem 7.2

 $U \bullet V = 0$ is the same thing as $U \perp V$.

Proof:

<u>Determine if U is perpendicular to V or W</u>: U = 4i - 5j and V = 7i - 4j and W = -10i - 8j

Theorem 7.3

Work = $F \cdot d$,

a dot product where F is a constant force exerted over a displacement vector d. The resulting units are ft-lbs. if F is lb and d is ft.

Ex: A car is pushed down a level street by exerting a force of 75 lbs at an angle of 10 with the horizontal. How much work is done to push the car 50ft?

end